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An algorithm is suggested for generating descriptive splines that permit one to make good use of  the available 
prior in format ion  in problems of  f i l tration, approximation,  and di f ferentiat ion o f  the data of  a 

thermophysical experiment. 

When interpreting the data of a thermophysical experiment and, in particular, when solving inverse heat 

conduction problems, the necessity arises for filtering the noise of measurements, nonparametric representation of 

the investigated functional relations, and construction of smooth (differentiable) approximations [1 ]. An effective 

approach to the solution of the above problems is based on the use of the techniques of smoothing splines [2, 3 ]. 

However, when there is a high level of errors in the original data, it is not always possible to obtain a solution that 

would be appropriate from the viewpoint of both the required accuracy and compliance with certain physical ideas 

on the process investigated. For example, the appearance of negative values of the first derivative is possible, though 

it is known that the investigated process is not a time-decreasing one. 

The present work considers the construction of a descriptive spline that makes it possible to overcome the 

above difficulties. 

A Descriptive Smoothing Spline and Its Construction. Suppose the investigated function f (x)  is represented 

by the following values measured at the nodes xi: 

~i = f (x i )  + ~i , l <_ i <_ n , (1) 

2 
where t]i is the noise of measurement with zero mean and variance cr i , and the nodes xi are arranged in increasing 

order, i.e., Xl < Xi+l. 
For stable evaluation of f (x)  and its derivatives f '  (x), f"(x) from the table {xi, ~/}, smoothing cubic splines 

are used [2, 3 ]. The smoothing cubic spline Sn,a(X) is expressed by a third-degree polynomial having a continuous 

second derivative over the segment (Xl, Xn) and admitting in each interval [xi, xi+l ] the representation 

Sn, a (x) = a i + b i (x - xi) + C i (X -- Xi) 2 + d i ( x  - x i )  3 . (2)  

To ensure the uniqueness of the smoothing spline, at the nodes Xl, Xn the corresponding boundary conditions are 

assigned [3 ], determined by the values of f(x) or its derivatives. In the variational approach, the spline Sn,a(x) is 

determined from the minimum of the functional 

xrt 
F a [S,  j]  = cz f (S" (x)) 2 dx + ~ p7~ 1 ~ii- Sn,a (xi)) 2, 

x 1 i=1 

(3) 

where a is the smoothing parameter; Pi > 0 are the weighting factors, Ultimately a system of algebraic equations 

for ci is obtained, from which the coefficients at, bi, and d i can be found [3 ]. By selecting the optimal smoothing 
parameter one succeeds in minimizing the mean square error (MSE) of smoothing [31, defined by the functional 
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A2(a) =M [ ~ (f(xi)- Sn'ct(Xi))2] ' i = l  

where M[ .  ] is the expectation operator. 

By the descriptive spline Sn,a(x) we mean a spline that minimizes (3) under  the restrictions 

dlOW Dli d up i e It, (4) i <- s (x i )  <_ , 

where D li is the differentiation operator of the li-th order (l i = 0, 1, 2); I r is a set of Nr indices (Nr is the total 
.low 

number of restrictions); lr C_ {1, 2 . . . . .  n}, d i , d up are the lower and upper boundaries. The proposed descriptive 

spline differs from that on convex sets [4, 5 ] by two features. First, it permits one to simultaneously take into 

account prior information about the function f(x) in different forms (including the first and second derivatives and 

also restrictions of the type of equalities when ~z z(~ = dT~ �9 Second, if the number of restrictions is small or if the 

restrictions are qualitative in character (for example, S'(x) > 0) and this prior information is not enough to construct 

an "appropriate" (from the viewpoint of MSE smoothing) spline, the transition to the spline Sn,a(x) removes this 

difficulty by a corresponding choice of the smoothing parameter. 

We now proceed to the presentation of the algorithm for generating the descriptive spline Sn,a(x). It is 

shown in the Appendix (see relation (A2)) that f (S"(x))2dx = srQs and then 

F a [S, Y ] = a s  T Q s +  ( s - y ) T p ( s - Y ) ,  (5) 

where P = diag {Pl, P2, ..., Pn} is a diagonal matrix; S -- I Sn,a(xl), Sn,a(x2), Sn,a(Xn) ] T is the vector of the spline 

values at the nodes xi; Q is an n x n matrix determined in the Appendix. 
First, we consider one-sided restrictions of the form DliS(xi) <_ d up, i E Ir, which, with account for relation 

(A3), can be rewritten as Ds < d up, where D is an Nr X n matrix. Taking into account Eq. (5), we arrive at the 

problem of quadratic programming 

} u + const (6) 

under  the restrictions 

Ds < d up (7) 

here Ua = 2 (aQ + P); u -- -2P~. 
We shall examine the existence and uniqueness of the solution of problem (6), (7). The existence of the 

solution is determined by the consistency of the system of restrictions (7), which is assumed a priori. Hereafter, 

for any a > 0 the matrix Ua is positive-definite, and the minimized functional is strictly convex. The admissible 

nonempty set of vectors s that satisfy Eq. (7) is a convex set. Therefore, the formulated problem of conventional 

minimization has a unique solution: s* [6 ]. 
To find s*, we employ the method of [7 ]. The Lagrange-dual problem consists in the minimization of the 

functional 

~ 0 )  = -~1 t T DU2I DTt  ~ + ptr (DU~I u - d up) 

with the restriction r >_ O, where # is a vector of dimension Nr. Upon finding the solution of this problem kt*, the 

vector s* is calculated from the matrix relation 

* -1 DTFt* S - - s - U  a 
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Fig. 1. Approximation of the function f(x): 1) exact function f(x); 2) noisy 

values; 3) the spline Sn,a(x) constructed at a = al;  4) the spline Sn,a(x) 

constructed at a = a 2. 

where s is the vector that attains the unconditional minimum of functional (6). It is composed of the values of the 

spline Sn,a(x) at the nodes x i. Thereafter, the system Am = Hs* with the three-diagonal matrix A is solved, and 

from the obtained vector rn the coefficients hi, ci, di [3 ] of the descriptive smoothing spline are determined (al = 

(s,~}i). 
In the case of two-sided restrictions (4), the descriptive spline is generated by the same algorithm after 

the transition to one-sided restrictions Ds -< ~', where D = I-D i D I 7" is a 2Nr • n matrix; ~' = ] d l~ ~ dUP I T 

is a vector of dimension 2Nr. 
In the above algorithm for generating the descriptive spline the value of the smoothing parameter a exerts 

a substantial effect on the accuracy. Several approaches can be used for its selection. For example, when selecting 

a one may ignore the introduced prior information. In this case, to estimate the optimal value aop t algorithms that 

are based on the optimality criterion and the cross significance method are used [3 ]. It should be borne in mind 

that the introduction of the prior information usually exerts a "regularizing" influence, and therefore the obtained 

value of a can be reduced by one order of magnitude. An alternative approach is the evaluation of aopt by the same 

algorithms but already with the vector s* of the values of the descriptive spline computed for each value of a. This 

substantially (by an order of magnitude or more) increases the expenditure of computer time. 

Results of a Computational Experiment. The following are the results of one of the numerous computational 

experiments dealing with the construction of descriptive smoothing splines. Figure 1 presents a plot of the function 

f (x)  assigned in the interval [0, 6 ]. Such a function is "difficult"for smoothing and differentiating its noisy values 

because it contains segments with substantially differing values of the first derivative (Fig. 2). The values of the 

function measured at 40 nodes xi were distorted by noise with the relative level 6. These values were used to 

construct the "ordinary" spline Sn,a(x) and the descriptive spline S*n,a(x) under the restrictions: a) S(x)  >_ O, x E 

[0, 6]; b) S'(x)  >_ O, x E 10, 3.5]; c) S"(x) >_ O, x E [0, 3.5], x E [4.5, 6.0] and for the smoothing parameter 

values <z 1 = ~topt; ~t 2 = 0.1aop t. 

In Figs. 1 and 2 the values of Sn,a(x), Sn,a(x), and its derivatives are given (the noise level c~ -- 10~).  It 

is seen that Sn,a(x) has a higher accuracy and, what is by no means unimportant, that Sn,~(x) satisfies the physical 

concepts about the approximated function f (x)  and its derivative. We note that the diversity of the prior information 

used for constructing Sn,a(x) is due to the intention to demonstrate wide possibilities for the algorithm. In other 

computational experiments and processings of real experimental data with "poorer" information a substantial 

increase in the accuracy of the solution of problems with the use of descriptive splines was also observed. 
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Fig. 2, Approximation of the derivative f '  (x): 1) exact derivative f '  (x); 2) 

derivative of the spline Sn,a (x); 3) derivative of the spline S*n,a (x). 

In conclusion, the author  wishes to thank A. A. Mitsel' and M. Yu. Kataev for their help in conducting the 

computational experiment.  

A P P E N D I X  

n # 

We introduce the vector of the second derivatives m = [Sn,a(X 1) . . . .  , Sn,a(xn) ] T, which is related to the 

vector s = [ Sn,a(x l ) ,  ..., Sn,a(Xn) 1T by the matrix relation [3 ] 

A m  = Hs . (A1) 

The  elements of the three-diagonal  matrices A and H are defined by the boundary  conditions used [3 ]. Here,  we 
# 

restrict ourselves to the "natural" boundary conditions S;~,a(Xl) = S"n,a(xn) = 0. Then  m = I Sn,a(x2) ..... S~,e(xn-P I T, 

and the elements of the (n-2) x (n-2) matrix A are defined as Aij  -- (h~§ 1 <_ i <_ n - 2 ,  At, i+ ~ = Ai+l,i = 

hi+l~6, 1 < i <_ n - 3 ,  where  hi = Xi+l-Xi. The  (n-2)  x n matr ix  H has the elements Hi, i = I /hi;  H i , i + l  '~  - 

(1/ht~'l/hi+l); Hi, i+2 = l /hi+l ,  1 <_ i <_n-2. Then,  using the vector m, the functional F[S]  = f (S"(x))2dx can be 

rewritten in the form F[S]  = roT"Am or (taking into account Eq. (A1)) as 

F [S] = s T H T A  -1 Hs = s T Q s .  (A2) 

The  vectors a, b, and c, composed of the spline coefficients a i, bi, and ci, are connected with the vector s 

by the following matr ix relations: a = Dos, b = D l s ,  c = D2s, where D O = I is the unit matrix, D1, D2 are (n • n) 

and (n-2) • n matrices; 

1 -1 
D I = L + T A - 1 H ;  D 2 = ~ A  H .  

The  matrix L has the dimensions (n x n) and the elements Li,i = -1~hi, Li, i+l = 1~hi, Ln, n-1 = -1/hn-1 ,  

Ln, n = 1/hn-1, and T is an n • In -2]  matrix that is defined as Ti, i = -hi~6, Ti+�94 = -hi+l/3,  Tn, n-2 = hn-1/6. 

Having denoted the i-th line of the matrices Do, DI, and D2 by DO, i, Dl,i, D2,i, the li-th derivative of 

restrictions (4) can be rewritten in the form 
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f Do,iS if / i = 0 ;  
Dli Sn,a (xi) = Dl,i s ,  if l i = 1 ; 

D2, i  s , if l i = 2 .  

Then the system of restrictions (4) can be represented in the form of the matrix inequality 

d l~ _< Ds <- d up (A3) 

in which D is an Nr • n matrix composed of the lines Dl, i ,  1 <_ i < Nr. 

N O T A T I O N  

f (x) ,  investigated function; f / ,  measured values; Sn a(x), smoothing spline; at, hi, c i, d i, coefficients of the 
* ' . _ l O W  . t i p  

spline; Sn,a(x), descriptive spline; a, smoothing parameter; Pi, weighting ractors; a i , ai , lower and upper 
li boundaries of admissible values for the derivative D i S ( x  i) at the node xi; s, vector of spline values at the nodes. 
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